Introduction

R-Shield® Geofoam is used in a wide range of structural and civil engineering applications. The selection of the appropriate grade of R-Shield Geofoam for a specific application is a critical decision to ensure suitable long term performance.

R-Shield Geofoam is a structural material produced in compliance with ASTM D6817, "Standard Specification for Rigid Cellular Geofoam". R-Shield Geofoam is available in 7 standard grades with compressive resistance @1 % strain ranging from 320 to 2,680 psf where the compressive resistance at 1% is the industry accepted allowable stress for the combination of dead and live loads for geofoam.

Disclaimer

This geofoam selection example is being provided to illustrate a simplified method for the calculation of vertical stress on geofoam in a hypothetical example. This simplified method is being provided only as an example and should not be relied upon for the selection of R-Shield Geofoam for a particular project. In applications where a concrete load distribution slab is used above the geofoam, more advanced load distribution analysis methods such as finite element modeling are recommended.

The selection and/or specification of a R-Shield Geofoam grade for a specific application should be determined by a qualified civil engineer who is acquainted with all possible aspects of a particular project.

Example

A project is proposed to be built using geofoam with a cross section and load as shown in Figure 1. R-Shield EPS 22 Geofoam is proposed to be used. Vertical loads must be calculated to ensure R-Shield EPS 22 Geofoam is appropriate.

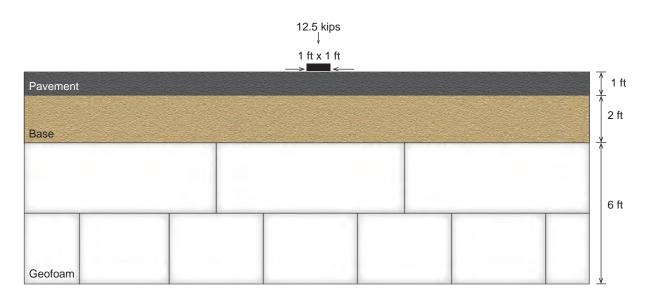


Figure 1. Project Section

Analysis Method

A simplified vertical stress distribution model is shown in Figure 2 based on NCHRP published literature¹.

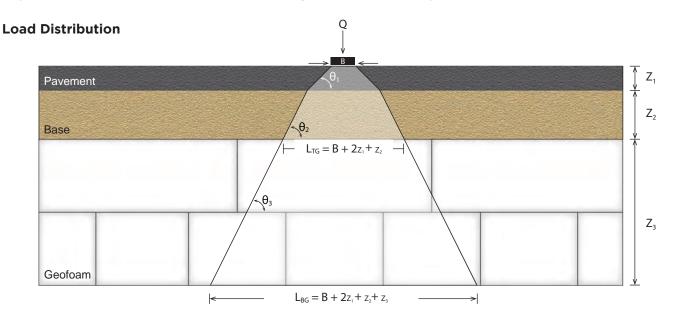


Figure 2. Simplified vertical stress distribution

Q = loading

B = equivalent width of loading

 θ_1 = 1H:1V slope

 θ_2 = 1H:2V slope

 θ_3 = 1H:2V slope

 z_1 = thickness of pavement

 z_2 = thickness of base

 z_3 = depth within geofoam

 L_{TG} = width of load at top of geofoam

 L_{BG} = width of load at bottom of geofoam

Calculation - Dead Loads

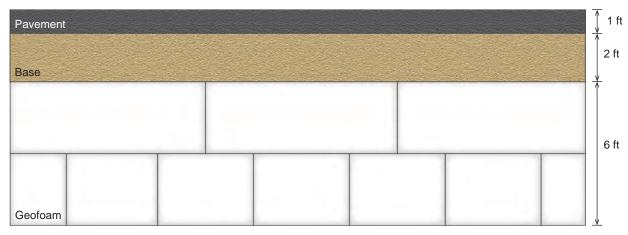


Figure 3. Calculations for dead loads

Dead load at top of geofoam:

$$\sigma_{\text{DL TG}} = z_1 * \gamma_{\text{Pavement}} + z_2 * \gamma_{\text{Base}}$$

where $\gamma_{\text{\tiny Pavement}}$ and $\gamma_{\text{\tiny Base}}$ = unit weight of pavement and base, respectively

$$\sigma_{DLTG} = 1 \text{ ft * 145 lbs/ft}^3 + 2 \text{ ft * 140 lbs/ft}^3 = 425 \text{ lbs/ft}^2$$

$$\sigma_{\text{DL TG}}$$
 = (425 lbs/ft²) / (144 in²/ft²) = 2.95 psi

Dead load at bottom of geofoam:

$$\sigma_{\text{DL BG}}$$
 = z_{1} * γ_{Pavement} + z_{2} * γ_{Base} + z_{GEOFOAM} * γ_{GEOFOAM}

where γ_{Pavement} and γ_{Base} and γ_{GEOFOAM} = unit weight of pavement, base, and geofoam, respectively

$$\sigma_{DLBG} = 1 \text{ ft * 145 lbs/ft}^3 + 2 \text{ ft * 140 lbs/ft}^3 + 6 \text{ ft * 1.35 lbs/ft}^3 = 433 lbs/ft^2$$

$$\sigma_{DL BG} = (433 \text{ lbs/ft}^2) / (144 \text{ in}^2/\text{ft}^2) = 3.01 \text{ psi}$$

R-SHIELD

Calculation - Live Loads

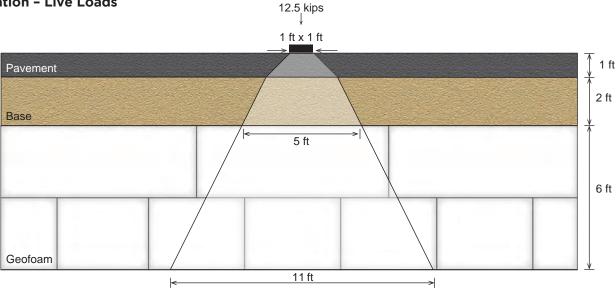


Figure 4. Calculations for live loads

Live load width at top of geofoam:

$$L_{TG} = B + 2z_1 + z_2$$

 $L_{TG} = 1 \text{ ft} + 2 * 1 \text{ ft} + 2 \text{ ft} = 5 \text{ ft}$

Live load width at bottom of geofoam:

$$L_{BG} = B + 2_{Z_1} + 2_2 + 2_3$$

 $L_{BG} = 1 \text{ ft} + 2 * 1 \text{ ft} + 2 \text{ ft} + 6 \text{ ft} = 11 \text{ ft}$

Note: Loads are shown calculated at top and bottom of geofoam only here for simplicity, but the load at any depth in geofoam can be calculated following a similar method.

Calculation - Live Loads

Live load at top of geofoam:

$$\sigma_{LL TG} = Q / (L_{TG} * L_{TG})$$

$$\sigma_{LL TG}$$
 = 12500 lb / (5 ft * 5 ft) = 500 lb/ft²

$$\sigma_{LL TG} = (500 \text{ lb/ft}^2) / (144 \text{ in}^2/\text{ft}^2) = 3.47 \text{ psi}$$

Live load at bottom of geofoam:

$$\sigma_{LL\,BG} = Q / (L_{BG} * L_{BG})$$

$$\sigma_{\text{LL BG}}$$
 = 12500 lb / (11 ft * 11 ft) = 103 lb/ft²

$$\sigma_{LL BG} = (103 \text{ lb/ft}^2) / (144 \text{ in}^2/\text{ft}^2) = 0.72 \text{ psi}$$

Calculation - Total Dead Loads and Live Loads

Total load at top of geofoam:

$$\sigma_{\text{TL TG}} = \sigma_{\text{DL TG}} + \sigma_{\text{LL TG}}$$

$$\sigma_{\text{TL TG}} = 425 \text{ lb/ft}^2 + 500 \text{ lb/ft}^2 = 925 \text{ lb/ft}^2$$

$$\sigma_{\text{TL TG}}$$
 = 2.95 psi + 3.47 psi = 6.42 psi

Total load at bottom of geofoam:

$$\sigma_{\text{TL TB}} = \sigma_{\text{DL TG}} + \sigma_{\text{LL TG}}$$

$$\sigma_{TL TB} = 433 \text{ lb/ft}^2 + 103 \text{ lb/ft}^2 = 536 \text{ lb/ft}^2$$

$$\sigma_{\text{TL TB}} = 3.01 \text{ psi} + 0.72 \text{ psi} = 3.73 \text{ psi}$$

Maximum stress on Geofoam is 6.42 psi

EPS 22 with a compressive resistance at 1% strain of 7.3 psi is suitable.

